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    Abstract- The rapid growth of the Internet of Things (IoT) and 

real-time applications has driven a paradigmatic shift away from 

centralized Cloud Computing and toward decentralized Edge 

Computing (EC). The move brings data processing closer to the 

source, enabling low-latency responses, reduced network load, and 

enhanced privacy. Yet, Edge Computing presents unique 

challenges in terms of managing distributed resources, ensuring 

data security, and maintaining operational efficiency, especially in 

latency-sensitive industrial applications. 

 

This article discusses advanced Edge Computing application in an 

emulated Bottling Plant with regards to the syrup processing, 

filling, molding, and packaging stages. We compare two 

implementations: a basic setup which depends on edge devices 

with minimal optimization and an improved implementation that 

applies some advanced techniques developed in recent research 

work, such as hybrid edge-cloud processing, decentralized 

resource auctioning, and adaptive runtime allocation. These 

improvements show drastic reductions in anomaly rates and 

latency across key metrics for much better process stability and 

efficiency. 

 

Through this study, we put forward the potential of Edge 

Computing in industrial automation and discuss its strengths and 

limitations. Our results provide a framework for deploying 

optimized EC solutions in environments where real-time data 

processing is paramount and lay a foundation for future research 

in Edge Computing applications. 

 

I.    INTRODUCTION 

 

   The exponential growth of the Internet of Things devices and 

real-time applications in recent years has pushed the 

development of Edge Computing as an alternative to Cloud 

Computing. The increasing integration of IoT into the 

operations of every industry makes the application of fast and 

efficient data processing more necessary—at least for those 

sectors where low latency and real-time response are 

characteristic, like industrial automation, healthcare, and 

autonomous systems. 

 

Unlike the cloud-centric models, where data is processed in 

remote data centers, Edge Computing has thrust computation 

closer to where data is generated, at the "edge" of the network. 

This shift has been transformative, enabling faster data 

processing, reduced bandwidth costs, and better privacy and 

security through reduced transmission of data to central servers. 

Decentralization of data processing, however, brings new 

challenges to the fore: how to cope with seamless 

communication, distributed resources, and security and privacy 

at multiple edge nodes. 

 

In this paper, we review the state-of-the-art methods for 

optimizing edge computing in latency-sensitive applications 

with an illustrative example of practical implementations in a 

simulated bottling plant environment. 

 

This setting includes multiple production stages—syrup 

processing, filling, molding, and packaging—each monitored 

by edge devices with tailored operational metrics. Comparing 

an elementary with a more evolved implementation, which 

employs state-of-the-art edge computing techniques, we 

demonstrate the impact of techniques such as decentralized 

resource allocation, hybrid edge-cloud processing, and adaptive 

runtime on anomaly detection and response times. This paper 

tries to reveal the benefits and challenges of implementing EC 

in industrial automation through a detailed review of current 

research on edge computing, with a focus on resource 

management and low-latency processing. We also shed light on 

how certain optimizations, learned from literature about 

distributed computing, lead to substantial performance 

improvement and provide a framework for Edge Computing 

applications in similar real-time scenarios in the future. 
 

 

II.   BACKGROUND AND LITERATURE REVIEW 
 

1. Edge computing in real-time applications 

 

Edge computing basically overcomes the limitations of 

traditional cloud computing by processing data closer to the IoT 

devices, hence avoiding latency and lessening the load of 

centralized processing. This comes in handy in several cases, 

especially for industries that require real-time processing, such 

as industrial automation and smart manufacturing. 

 

2. Edge Computing: The Main Challenges—Security and 

Privacy  

 

This majorly increases the use of EC, introducing big security 

and privacy concerns, especially since data processing is 



distributed over multiple nodes, each representing a potential 

point of vulnerability. In this line, a Systematic Review on 

Security and Privacy Requirements in Edge Computing points 

out that secure transmission and storage of data are the basics 

for establishing safe operations in an EC environment. 

This paper describes how data needs to be secured at every layer 

of the edge network, and we implemented those principles in 

our simulation in securing metrics transmissions in every edge 

device with emphasis on the syrup processing and filling stages 

where highly sensitive production data is produced. 

 

3. Hybrid Edge-Cloud Collaboration for Distributed Resource 

Management 

 

In complex systems where high-throughput data is involved, a 

hybrid model, edge-cloud, promises efficiency in striking a 

balance between local edge processing and centralized cloud 

resources. The Cloud-Edge-Device Collaboration Framework 

presents a model for handling real-time data and complex 

computations in a manner that allows local nodes to deal with 

minor anomalies while sending critical events to the cloud. 

That's how we used the hybrid model in our bottling plant 

simulation: the syrup room was able to handle minor 

temperature or viscosity anomalies locally, but more severe 

deviations were referred to cloud resources. This hybrid 

approach enhances responsiveness without overloading the 

edge network. 

 

 
Figure 1:Hybrid Edge-Cloud Processing in Syrup Room: 

Comparison of Anomaly Rates for Syrup Temperature 

 
4. Decentralized Resource Auctioning for Latency-Sensitive 

Processes  

 

This would help latency-sensitive tasks in industrial automation 

by decentralizing resource allocation, which prevents 

bottlenecks and allows for resource allocation based on 

demand. According to the paper "Decentralized Resource 

Auctioning for Latency-Sensitive Edge Computing," 

auctioning can be used to allow devices to bid for resources, 

therefore guaranteeing that high-priority tasks get timely 

attention. 

We used this pattern on the PET machine section of our bottling 

plant simulation and employed frequency-dependent, 

processing-load-dependent, and latency-sensitivity-dependent 

triggers; this ensured resources were allocated optimally to 

keep the mold temperature and air pressure within optimal 

ranges. 

 

5. Adaptive Runtime and Code Offloading for High-Load 

Conditions 

 

The filler stage in a bottling plant has a fluctuating processing 

load due to varying fill rates, CO₂ pressure, and temperature. 

On an Amino Distributed Runtime Framework, code offloading 

and adaptive runtime adjustments can be performed to handle 

efficiently such high-load situations. It optimized the 

processing capacity of the edge device by dynamically 

offloading the computation of fillers to the cloud during periods 

of high demand, allowing the edge device to focus on core, real-

time metrics, while the cloud handled ancillary tasks. This 

adaptive approach reduced filler anomalies like inconsistent fill 

levels or temperature fluctuations, which provide support for 

smoother operation.  

 

6. Comparative Edge Computing Approaches in Packaging  

 

The final step in our simulation was packaging, to ensure 

accurate label alignment and achieve packaging rate targets. 

Authors in the paper Comparison of Edge Computing 

Implementations discuss various approaches to EC, including 

Mobile Edge Computing (MEC) and cloudlet-based systems, 

and how each can be suited to specific latency and resource 

constraints. In our enhanced simulation, an adaptive adjustment 

of runtime parameters was automatically invoked in the event 

of sudden demand peaks that greatly reduced misalignment and 

packaging bottlenecks and provided a smoother output. 

 

 
Figure 2:Comparative Edge Computing Approaches in 

Packaging: Improvement in Packaging Rate and Label 

Alignment Accuracy 
 

III.   METHODOLOGY 

 

We simulate a bottling plant environment to assess the impact 

of advanced Edge Computing (EC) techniques for real-time 

data processing and anomaly management. The created 

environment allows for monitoring critical production metrics 

through various stages, such as syrup preparation, filler, PET 

molding, and packaging. We implemented two versions: a basic 

implementation with minimal edge processing and an improved 

implementation that integrates advanced EC techniques based 

on recent research. The following methodology explains the 

setup, data generation, metrics monitoring, and applied 

improvements at each stage. 

 

1. Simulation Setup 

 

The simulation was done as a web application using Node.js, 

Express, and JavaScript for both frontend and backend 

processing. The metrics were simulated in real time; hence, data 

were updated every second of actual bottling plant conditions. 

Data were logged constantly in CSV files for post-analysis, 

while the simulation included automatic anomaly generation to 

mimic real-world fluctuations in production metrics. 



Each edge device in the simulation corresponded to one of the 

production stages and handled the following metrics: 

 

Syrup Room: Temperature, viscosity, Brix level (sugar 

concentration), pH. 

Filler: CO₂ pressure, fill level, temperature, and filling rate. 

PET Machine: Mold temperature, air pressure, and production 

rate. 

Packaging: Label alignment accuracy and packaging rate. 

 

2. Data Generation and Anomaly Simulation 

 

To be realistic, metrics were generated based on predefined 

normal ranges with anomalies introduced at regular intervals to 

simulate production irregularities. For example, the 

temperature in the syrup room was kept between 65-75°C. 

Random fluctuations outside this range simulated anomalies. 

Anomalies were generated using a mix of static, event-based, 

and periodic triggers at set intervals in order to represent diverse 

scenarios and ensure both versions encounter comparable data. 

While the basic implementation only logged these anomalies, 

the enhanced implementation utilized adaptive responses based 

on resource requests, threshold violations, and load balancing 

techniques. 

 

3. Basic Implementation: Baseline Anomaly Logging 

 

In the basic implementation, each edge device generally acted 

as a passive data logger. It logged all metric data and marked 

anomalies but did not implement any optimizations for load 

balancing, latency reduction, or resource allocation. This setup 

provided a baseline to compare how the advanced EC 

techniques used in the improved implementation were 

effective. 

 

4. Better Implementation: Innovative Edge Computing 

Techniques 

 

The enhanced implementation included several EC techniques 

to improve anomaly handling and resource allocation in each 

stage of the bottling plant. The methods listed below were 

implemented based on recent studies: 

 

Hybrid Edge-Cloud Processing for Syrup Room 

 

Minor temperature and viscosity anomalies were handled 

locally to minimize cloud dependency, while more extreme 

deviations kicked in offloading to cloud resources. This hybrid 

model appropriately balanced responsiveness with efficient 

resource utilization. 

Resource Auctioning in PET Machine 

 

A decentralized auction model allowed PET machine nodes to 

"bid" for resources, prioritizing tasks based on real-time 

demand and anomaly frequency. For example, if the threshold 

of air pressure was exceeded, dynamic adjustment of resource 

allocation would be performed to stabilize the system. This 

strategy minimized potential latency, as resources were 

optimally allocated during high-demand periods. 

 

Adaptive Runtime and Code Offloading for Filler 

 

The filler stage has adaptive runtime and cloud offloading to 

handle high-load scenarios. Whenever CO₂ pressure or fill level 

frequency anomalies reached a critical level, the system 

offloaded non-critical tasks to cloud resources, which in turn 

allowed edge devices to focus on the execution of immediate 

high-priority tasks. 

 

Mobile Edge Computing in Packaging  

 

During packaging, MEC was used to dynamically adjust label 

alignment accuracy and packaging rate. In surges of demand, 

more runtime was allowed by the system in the alignment tasks, 

reducing the rate to maintain accuracy. This, as a result, kept 

consistency and reduced misalignment errors.  

 

5. Data Logging and Post-Processing  

 

Data from both implementations were logged into separate 

CSV files (basic_metrics.csv and improved_metrics.csv). For 

each metric, timestamps, normal values, and anomalies were 

recorded in order to enable the direct comparison between the 

basic and improved versions. The post-processing analysis 

included the calculation of anomaly counts and improvement 

rates and compared the latency reduction achieved by each 

technique.  

 

6. Data Visualization and Comparison  

 

To better visualize the effectiveness of these advanced EC 

techniques, we used Python with the Pandas library to create 

comparative graphs. The metrics for each stage were plotted to 

show the reduction in anomalies and the improvement in 

stability achieved by the improved implementation. The 

visualizations showed plots of each metric across the 

production stages; some figures provided a clear example of 

how specific EC optimizations further reduced anomalies in 

real time. 

 

IV.   RESULTS 

 

The results of the simulation of a bottling plant show that 

advanced Edge Computing techniques can be effective in 

anomaly reduction and optimization of resource usage at every 

critical stage of production. The following presents the basic 

and improved implementation results, where the improvements 

due to anomaly reduction, latency, and process stability are 

underlined. 

 

 

 

 

1. General Anomaly Reduction 



 

The improved implementation led to the reduction of anomalies 

in counts in many key metrics, particularly in syrup 

temperature, filler filling rate, and packaging rate. In the 

improved system, with the adoption of EC techniques like 

hybrid edge-cloud processing, decentralized resource 

auctioning, and adaptive runtime adjustments, resilience to 

fluctuations in production metrics was much better. Table 1 

summarizes the percentage improvement in anomaly reduction 

across metrics. 

 

Table 1: Improvement in Anomaly Reduction by Metric 
Metric Improvement (%) 

Syrup Temperature 66.67 

Filler Filling Rate 75.00 

Packaging Rate 73.33 

 

 

2. Stage-Wise Results and Visualizations 

 

a) Syrup Room: Hybrid Edge-Cloud Processing 

In the syrup room, the hybrid edge-cloud model introduced a 

66.67% reduction in temperature anomalies. The reduction of 

latency—that is, faster responses for minor issues and 

offloading of major deviations to cloud resources—was 

because of the local processing of minor temperature 

fluctuations. 

 

 
Figure 3:Hybrid Edge-Cloud Processing in Syrup Room: 

Comparison of Anomaly Rates 

 
This figure compares the syrup temperature anomalies between 

the basic and improved implementations, hence illustrating the 

impact of hybrid processing. The figure shows fewer, red-

marked anomalies in the improved implementation, therefore 

proving the effectiveness of the local vs. cloud-based anomaly 

handling. 

 

b) PET Machine: Decentralized Resource Auctioning 

 

The proposed decentralized resource auctioning technique of 

the PET machine allowed edge devices to allocate resources 

dynamically according to the demand. It worked very 

effectively in keeping the mold temperature and air pressure 

stable, where the appearance of anomalies is very much reduced 

during high-load periods. While direct anomaly counts did not 

diverge dramatically in some metrics, latency improvements 

were seen, as devices prioritized high-demand tasks for 

resource balancing to better performance. 

 

 
Figure 4: Decentralized Resource Auctioning in PET 

Machine: Reduction of Mold Temperature and Air 

Pressure Anomalies 

 

Figure 4 shows side-by-side comparisons of PET machine 

anomalies with improvements in temperature stability and air 

pressure consistency achieved through auction-based resource 

allocation. 

 

c) Filler Stage: Adaptive Runtime and Code Offloading 

In that respect, this adaptive runtime and code-offloading 

approach reduced the anomalies by 75% for the filling rate and 

much better consistency in CO₂ pressure. The system, by 

offloading non-critical tasks to the cloud, preserved the edge 

resources for essential operations, thus keeping the edge device 

responsive to high-priority metrics, especially when there are 

demand spikes.  

 

 
Figure 5:Adaptive Runtime and Code Offloading for Filler 

Stage: Comparison of Anomaly Rates in Fill Level and CO₂ 

Pressure 

 

Figure 5 shows the anomaly reduction in fill level and CO₂ 

pressure at the filler stage, which implies the effectiveness of 

the adaptive runtime and selective offloading. Indeed, one can 

observe the improvement by the decrease in anomalies—filled 

in red—in its improved implementation. 

 

d) Packaging: Mobile Edge Computing (MEC) and Cloudlet 

Runtime Adaptations 

 

In the packaging stage, Mobile Edge Computing (MEC) and 

cloudlet-based adjustments reduced misalignment anomalies 



by 73.33% and stabilized the packaging rate. Runtime 

adjustments during peak loads assured accurate label alignment 

without packaging speed compromise, hence showing the 

flexibility and adaptability of MEC.  

 

 
 

Figure 2 compares the anomalies in packaging rate and label 

alignment under the impact of MEC and cloudlet-based 

adjustments. From the figure, it is well reflected that the 

improved implementation is capable of handling demand 

fluctuations without severe alignment errors or rate drops.  

 

Overview of simulation results affirm that, by mature EC 

techniques, it can greatly enhance real-time production 

stability. The improved implementation, having resource-

efficient processing models tailor-made for each step of 

production, reduced anomalies and balanced load across all 

edge devices. These results show a strong base further to 

explore Edge Computing in industrial automation and how it 

can be optimized for real-time monitoring and reduction of 

latency in response through targeted EC methods. 

 

V.   DISCUSSION 

 

 
 

These results show that EC can be used to improve real-time 

monitoring and anomaly management for latency-sensitive 

industrial applications. Comparing the basic versus improved 

implementation of the Bottling Plant simulation, we see a 

dramatic reduction in anomalies, better resource allocation, and 

a reduction in response latency. We now discuss these findings 

in some detail from the perspective of existing literature, 

including practical implications, limitations, and possible future 

research directions. 

 

1. Impact of Edge Computing Techniques on Anomaly 

Reduction and Latency 

 

The improved implementation achieved considerable 

reductions in anomalies for certain metrics, most noticeably in 

syrup temperature, filler filling rate, and packaging rate. 

Combining hybrid edge-cloud processing with decentralized 

resource auctioning, adaptive runtime adjustments using 

Mobile Edge Computing (MEC), the system would become 

more robust to any fluctuations in the production metrics—

figures of the Results section demonstrate this. 

 

This also aligns with the findings in research about hybrid 

processing frameworks, such as those presented in "Towards 

Analyzing the Performance of Hybrid Edge-Cloud Processing," 

which stress the offloading of critical events to cloud resources 

and managing minor events locally. In our syrup room use case, 

this meant minor temperature fluctuations were addressed at the 

edge, reserving cloud resources for critical deviations, in order 

to strike a balance between responsiveness and efficiency. This 

hybrid model reduced not only latency but also the resources 

allocation, confirming the gains in efficiency discussed in prior 

studies. 

 

2. Decentralized Resource Allocation and the PET Machine 

 

The decentralized resource auctioning technique has been 

proved to stabilize the mold temperature and air pressure of the 

PET machine by dynamically adjusting the resources according 

to the demand. Anomaly reduction for these metrics was 

modest, but in this approach, latency improvements and a 

balanced load were seen—some of the advantages of auction-

based resource allocation. 

 

For example, studies like Decentralized Resource Auctioning 

for Latency-Sensitive Edge Computing focus on dynamic 

bidding in order to efficiently manage high-priority tasks, 

ensuring that critical metrics receive immediate attention during 

high-load scenarios. 

 

This finding shows the scalability of the decentralized approach 

in real-time applications where demand-based resource 

balancing is a must. Future work could focus on more fine-

grained auction mechanisms, possibly integrating machine 

learning to predict resource needs and proactively allocate 

them. 

 

3. Adaptive Runtime and Code Offloading in High-Load 

Conditions 

 

Likewise, the filler stage results confirm the efficacy of 

adaptive runtime and selective code offloading, similarly to the 

idea expressed in Amino: Distributed Runtime for Dynamic 

Applications Across Device, Edge, and Cloud. The number of 

filler anomalies was curtailed by the adaptive offloading 

mechanism; it freed edge resources for critical tasks by 

offloading non-critical computations to the cloud, thereby 

providing stability during periods of high demand—hence 

proving that code offloading and dynamic runtime adjustments 



indeed help enhance the consistency of edge devices under 

stress. 

Practicality of this approach lies in the balance of flexibility: 

offloading only under critical conditions, the system reduces 

latency without unwarranted reliance on cloud resources. 

Adaptive runtime, as such, is a balanced resource-efficient 

approach, apt for industrial environments with varying 

demands. More research in this regard may focus on trade-offs 

involved in adaptive runtime implementation in various 

scenarios, as high-frequency offloading may introduce latency 

if not managed carefully. 

 

4. The Application of MEC in Packaging Application 

 

The use of MEC and cloudlet-based runtime adjustments at the 

packaging stage allowed a significant improvement in 

packaging rate stability and label alignment accuracy. MEC 

allowed cloudlets to make rapid adjustments in label alignment 

during demand surges, which is coherent with findings from 

Comparison of Edge Computing Implementations that MEC 

will prove particularly useful for low-latency, location-

dependent applications. 

The success of MEC in reducing anomalies in label alignment 

and packaging rate proves its flexibility for fluctuating 

demands—a very important requirement for high-speed 

production environments. This result shows the potential of 

MEC for applications in other precision-focused industries, 

where even small deviations can lead to bigger problems related 

to quality control. In this line, future work could further 

investigate the scalability of MEC over more distributed 

systems, analyzing runtime adjustments that can be made to 

further increase the precision of multi-node industrial 

processes.  

 

VI.   CONCLUSION AND FUTURE WORKS 

 

Results from this research show that EC has the potential to 

transform how industrial automation in various aspects is 

resilient and efficient. Advanced EC techniques, including 

hybrid edge-cloud processing, decentralized resource 

auctioning, adaptive runtime adjustments, and MEC, when put 

into practice, showed notable improvements in anomaly 

reduction, latency, and load balancing at key stages of a 

simulated bottling plant environment. The enhanced realization 

has proven the feasibility of customized EC solutions in 

meeting the special requirements of latency-bound applications. 

 

Practical Implications for Industrial Automation These results 

of our simulation of the bottling plant show how integrating 

Edge Computing into industrial automation brings out the 

benefits. By allowing for real-time processing, reducing 

latency, and enhancing anomaly management, EC techniques 

could make production processes more resilient and adaptive. 

Considering the above, these methods can optimize the use of 

resources and enhance the stability of important metrics by 

reducing anomalies and balancing the load. 

 

This has practical implications where such downtime or 

inconsistencies could lead to costly losses in various industries, 

including food and beverage manufacturing, pharmaceuticals, 

and electronics. 

The combination of hybrid edge-cloud models, decentralized 

resource allocation, adaptive runtime, and MEC gives the 

framework for how EC can be implemented in these diverse 

environment needs. Tailored EC can be applied in industrial 

applications using hybrid processing for areas requiring 

flexibility, MEC for precision tasks, and decentralized 

allocation for high-process-demand applications. 

 

Limitations and Future Research Directions 

 

While the results of the improved implementation are 

promising, there are some limitations that should be taken into 

consideration. Firstly, the scope of the simulation was 

constrained to a single bottling plant scenario; results might 

differ in other industrial contexts. More research is thus needed 

to replicate this methodology across a variety of production 

environments to validate the scalability of these EC techniques. 

 

Moreover, although decentralized auctioning and adaptive 

runtime resulted in improvements, these have not been tested 

under extreme loads, which may work against responsiveness 

in the system. Another limitation was the static configuration of 

the resource allocation model. In this regard, future research 

could focus on dynamic resource management algorithms that, 

through machine learning, predict and preemptively allocate 

resources according to production patterns. Similarly, 

extending adaptive runtime and MEC to support predictive 

maintenance could further enhance anomaly detection and 

reduce response times. 
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